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The effects of chain length and molecular architecture on the second virial coefficient of branched 
polymer chains has been studied using a perturbation analysis. It is found that the deviation from the 
infinite chain length asymptote increases as the degree of branching increases for chains having less than 
about 100 statistical segments. A semi-empirical equation is proposed for higher values of the inter- 
action parameter, z. 

The second virial coefficient, A 2, of polymer solutions 
appears in the virial expansion of the osmotic pressure, 7r, 
as  1: 

7r 
= R T + A 2c + A 3 c2+ . . .  

C 

(1) 

and is important theoretically since it represents the first 
order deviation from the ideal, van't Hoffbehaviour. In 
equation (1), M is the molecular weight of the polymer, T, 
the absolute temperature, c, the concentration of the poly- 
mer and R, the universal gas constant. Equation (1) forms 
the basis of the experimental determination of the molecular 
weight of polymers using dilute solution osmometry. 

Zimm 2 suggested that for flexible macromolecules, A 2 
depends on two independent factors, the size or length of 
the molecule and the interaction of short segments of the 
two chains. Using the McMillan-Mayer theory, Zimm 1-3 
obtained the following perturbation solution for A2 for 
linear polymers, valid in the limit of large chain length: 

Navn 213 * Navn 2/3* 
A 2 -  2M 2 [ 1 - 2 . 8 6 5 z + . . . 1  = 2M 2 ho(z ) (2) 

Equation (2) has been derived using the equivalent chain 
model ~'4 of the polymer molecule in which the latter is rep- 
resented as a sequence o fn  + 1 point masses numbered 0 to 
n, connected by n Kuhn statistical segments. Each statistical 
segment represents a fixed number of backbone bonds of 
the physical molecule, this number being so chosen s that the 
components of the end to end vector for any statistical seg- 
ment are characterized by a Gaussian distribution function. 
The mean square end to end distance of any statistical seg- 
ment is l 2. In equation (2), Nay is the Avogadro number and 
/3* is the binary cluster integral defined as: 

/3*= f 41rr 2 { 1 -  e x p [ - V ( r ) / k T l }  dr (3) 

0 

where V(r) is the potential energy of interaction between any 
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two of the n + 1 point masses of the equivalent chain separa- 
ted by a distance r and k is the Boltzmann constant. The 
parameter z in equation (2) is defined as: 

z = /3"/l 1/2 (4) 

The subscript 0 on h(z) indicates the absence of intra- 
molecular interactions. 

Several other theories for the second virial coefficient of 
linear polymers have also been formulated and have been 
reviewed by Yamakawa 1. Very little theoretical work 
exists, however, for branched polymers. Casassa 6 s has ob- 
tained the perturbation result given by: 

Navn2• * 
A 2 = - -  (I - Cz + . . . )  (5) 

2M 2 

and has obtained an analytical expression for C for uniform 
star molecules 6 and numerical values of C for uniform nor- 
mal comb 7 and some more general comb molecules 7'a (these 
branched structures are described by Yamakawa I and other 
workers9-11). These studies apply only in the limit of high 
molecular weight. 

Significant deviations from the high molecular weight 
asymptote have been found in earlier studies of the distribu- 
tion of the radius of gyration 5,9,1°,~2, the segment density ~3'~4, 
the interaction energy associated with a chain ll, the excluded 
volume effect s'ls'16 and the adsorption of polymers on a 
surface 17'18. The same effect was also observed for the 
second virial coefficient of linear polymers ~9. In this paper, 
results on the second virial coefficient for uniform star and 
comb polymers are presented. The method, however, can 
be used for studying molecules having any generalized 
molecular architecture. 

GENERALIZED FORMULATION FOR THE SECOND 
VIRIAL COEFFICIENT 

Zimm 2 adapted the McMillan--Mayer theory to obtain A2 
for polymer solutions: 
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n-I 

11+1 J2+l _~ 
I n 

Figure I Two polymer chains, 1 and 2, having contact L'etween the 
i l th and j2th masses and between the klth--/2th masses. A, chain 1, 
B, chain 2 

Cil, i2, k~, 12 = Iil - k l [ +  I].2 - 121 (9) 

For any branched chain, Ii 1 - k 1 I and I].~ - 12 l are the 
shortest distances, in terms of  the number of  statistical seg- 
ments, encountered while going frommasses i I to k l ,  and 
./2 to 12, respectively. Since chains 1 and 2 have identical 
molecular architectures, cil,/2, kt 12 c a n  be written as a sum 
of  two elements of  an (n + 1) x (n'+ 1) symmetric matrix ~_" 

¢i l,j2,k l, 12 = ~k,i + ~l,] (10) 

where ~p,q (p, q going from 0 to n) represents the smallest 
number of  statistical segments lying between point masses 
p and q on a polymer chain and is always positive. For a 
linear chain, ~p,q is Iq -- p [. For branched chains having 
any molecular architecture, ~=may be easily generated 22. 

RESULTS AND DISCUSSION 

Using equations (8) and (10), and the fact that several terms 
in the quadruple summation are identical, we can obtain a 
simplified equation for A 2: 

Nay 
h2- 2 W[ ~2 f " ' f  Fl(1)Fl(2)X 

. n } 
1~1~0 ~ (1 + X i t , f 2 ) -  1 d(1)d(2) 

i = ]2=0 

where 

(6) 

Nav(n + 1)2/3 * 
A 2 - x 

2M 2 

[ z . 2  ] 
1 1/2( n + ~ npnq 

2n 1 )2 ~ -~-q)3/2 
p=0 q=0 J 

~(p=O.q=O) 

_ Nav(n + 1)2(3 * 

2M 2 
[1 - Cnz ] (11) 

xi, , j= = -/3*~(B;,, j~) (7) 

In this equation, V1 is the volume of  the solution, F t (1  ) 
and F t (2 )  are the single molecule distribution functions for 
any two polymer molecules 1 and 2, =Rix ,/2 is the vector bet- 
ween the ix th point mass of the first molecule and the 1"2 th 
mass of  the second molecule (subscripts 1 and 2 on i and ] 
refer to molecules 1 and 2, respectively) and d(1,2) represents 
the differential over all the coordinates of  molecules 1 and 
2. The integration is performed over all of  these coordinates. 
Equations (6) and (7) may be simplified w by using the 
Wang-Uhlenbeck a'2°'2~ theorem to give finally: 

Nav(n + 1)2/3 * r z 
- [ 1 A1 2312 2nl/2( n + 1) 2 x 

where np is the number of  times any number p (p = 0, 1, 2, 
• . .  n) occurs in Land ~(p --- 0. q = 0) means that the term 
when both p and q are zero is excluded from the summation. 

Results for Cn/C.. as a function o f n  are shown in Figure 2 
for several Lmiform star and uniform normal comb chains, 
along with the earlier results for linear chains 19. Values of  
C** for the corresponding chains were obtained from 
Yamakawak It is observed that the deviation from the asymp- 
tote increases as the chain becomes more highly branched for 
values o fn  below about 100. However, the value of Cn/C= 
is found to be independent of  branching above n about 100. 
This is most interesting since no equivalent phenomenon was 
observed in earlier studies of the effect of molecular arcbi- 

n n n n 

E E E E  ' ] 
e~./~ + " "  

i l = 0  ] '2=0 k l - - 0  12--0 ' l , j 2 ,  k l ,12  

~(il = k l ) . 0 " 2  = 12) 

(8) 

The notation ~( i l  = k l ) .  (/2 = 12) on the quadruple sum- 
mation indicates that there are no terms corresponding to 
it = kl  and/2 = 12"ci 1,]'2, kl ,  12 is the total number of  
statistical segments in the loop shown in Figure 1 where two 
molecules 1 and 2, having n + 1 point masses each, numbered 
0 to n, are shown with masses i I and ./2 in contact (broken 
lines) and kl and l 2 in contact. For linear chains: 

C 
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Cn/Coo vs. n for linear and some branched chains 
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Figure 3 C n vs. n for some uniform star, uniform normal comb and 
tree-branched chains. A, 5-branched comb; B, tree; C, 7-branched 
star; D, 11 -branched star 

6 

Nay(. + 1)2 * ] 
A 2 - 2M 2 ; ln(1 + 2Cnz) (13) 

Such a procedure has been used before l's,19,2s both in the 
excluded volume problem and A2, and has been found to 
give better agreement with experimental results on the ex- 
cluded volume effect. Equation (13) can be rewritten in 
terms ofn  as: 

Nav(n+l)2/3* [ 1 )1 
A 2 - 2M 2 2Cnifn 1/2 ln(l + 2CnKn 1/2 (14) 

where K relates z to n 1/2 and accounts both for the solvent- 
polymer interaction terms as well as the relationship between 
M and n. For the 0 solvent K is zero and it increases as the 
solvent is improved, to a value generally below 10 (though 
theoretically, it can go to infinity). Since Nav(n + 1)23"/ 
(2M 2) is independent of molecular weight, equation (14) 
suggests that a log-log plot of: 

ln(1 + 2KCn n 1/2) 
2KCn n 1/2 {= 2M2A2/[Nav(n + 1)2/3"]} 

Table 1 Coo, k and x in equation (12) for some branched chains 

Type Coo (ref 1 ) k x 

3-branch uniform star 3.279 1.02317 0.5146 
4-branch uniform star 3.873 1.3924 0.576 
5-branch uniform star 4.586 2.2132 0.67 
2-branch uniform comb 3.536 1.1880 0.544 
3-branch uniform comb 3.753 1.562 0.599 

tecture on the distribution of  the radius of gyration 9'1° and 
segment density distribution 14. 

The effect of molectdar architecture on Cn is more vividly 
illustrated in Figure 3 where Cn is plotted as a function ofn  
for a 5-branch uniform normal comb, a 7- and 11-branch 
uniform star and an 1 1-branch tree molecule studied earlier 9. 
Curves A, B and D show the behaviour of Cn when eleven 
sub-units of equal length are connected together in various 
ways. Significantly high values of Cn and lower A2 are ob- 
served when these sub-units are all connected in a compact 
manner as in the 11-branch star than when they are connec- 
ted more sparsely as in a uniform tree or comb. 

The following empirical equation was found earlier 19 to 
represent C n fairly well over the range ofn  above ~10: 

Cn=C** l -  (12) 

Table I lists the values of C**, k and x for some uniform 
star and uniform normal comb chains. 

Equation (12) is a perturbation result valid for small 
values of the parameter z, characterizing the polymer-solvent 
interaction (and molecular weight). A semi-empirical equa- 
tion for A2, valid for higher values o fz  may be written by 
assuming A2 to be given by an equation of the same form 
as the Flory-Krigbaum--Orormo 1'23'24 theory and matching 
the series expansion for the latter with the perturbation 
result. This leads to: 

vs. n will be identical to a log-log plot of A2 vs. M, except 
for horizontal and vertical shifts, for a polymer-solvent sys- 
tem at a fixed temperature. Figure 4 shows these plots for 
linear as well as several uniform star chains for some values 
of K. It is observed that the deviation from linear chain plots 
increases as the degree of branching increases and also as the 
solvent becomes thermodynamically improved. This is in- 
tuitively expected and represents the fact that when two 
polymer molecules are close together, repulsive forces bet- 
ween polymer segments predominate whereas when the 
molecules are further apart, polymer-solvent interactiom 
are predominant. 

CONCLUSIONS 

The effect of varying the molecular architecture, chain 
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D 

Figure 4 In (1 + 2KCn n l / i ) l ( 2KCn  n i l2 )  vs. n for some values '~f K. 
A,K=50;B,K= IO.O;C,K= I.0;D,K=O.1;E,K=O.O1;F,K=O 
(bottom line on each set is for  11-branch uniform star) 
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length and the solvent-polymer  interaction energy on the 
second virial coefficient has been studied. It has already been 
reported 19 that the use of C~ in place of the more exact co- 
efficient C n in the semi-empirical equation (11) leads to con- 
siderable error in the A 2 vs. M plot for linear chains, es- 
pecially in good solvents. Larger errors are expected for 
branched chains in view of the results shown in Figures 2 
and 4. 
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